UNIVERSITY COLLEGE LONDON

4

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1402

ASSESSMENT : MATH1402A PATTERN

MODULE NAME : Mathematical Methods 2

DATE : 28-Apr-08

TIME : **10:00**

TIME ALLOWED : 2 Hours 0 Minutes

2007/08-MATH1402A-001-EXAM-204 ©2007 University College London

TURN OVER

www.mymathscloud.com

www.mymathscloud.com All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State, without proof, the general formula for a Fourier series on $(-\pi, \pi)$ for a function f(x), giving the expressions for the coefficients.
 - (b) Find the Fourier series for

$$f(x) = \begin{cases} 0 & , & \text{if } -\pi < x \leqslant -\frac{\pi}{2} \\ 1 & , & \text{if } -\frac{\pi}{2} < x \leqslant \frac{\pi}{2} \\ 0 & , & \text{if } \frac{\pi}{2} < x < \pi \end{cases}$$

(c) Using Part b, or otherwise, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

2. (a) Define the Jacobian

$$rac{\partial(x,y)}{\partial(u,v)},$$

where x(u, v) and y(u, v) are smooth functions.

(b) Using the definition from Part a, determine the Jacobian for the coordinate transformation defined by the functions

$$x(u,v) = rac{u+v}{2}$$
 and $y(u,v) = rac{u-v}{2}$.

(c) Let R be the first quadrant in the xy-plane. Using the coordinate transformation from Part b, or otherwise, find

$$\iint\limits_{R} e^{-(x+y)^2} dx dy$$

PLEASE TURN OVER

MATH1402

- 3. (a) State the Divergence Theorem carefully.
- WWW.MYMathscloud.com (b) Let S be the surface of the closed box defined by $0 \le x \le 4, 0 \le y \le 2$, and $0 \leq z \leq 10$. Let a be a positive constant and consider the vector field

$$F(x, y, z) = (3a^3 - 2a)xi + \frac{x^2 \cos(z)}{z+4}j + \frac{\ln(|y+1|)}{(x+1)^2}k$$

Find the exact value of a so that the flux of F over S is 0.

- (c) Considering the situation in Part b, how would the value of a change if we replace the vector field F by the vector field F + G, where G(x, y, z) = $g_1(y,z)\mathbf{i} + g_2(x,z)\mathbf{j} + g_3(x,y)\mathbf{k}$ with smooth functions $g_1, g_2, g_3: \mathbb{R}^2 \to \mathbb{R}$.
- 4. (a) State Green's Theorem in the plane carefully.
 - (b) Sketch the contour C which is described as follows: Begin at the point (2, 3). Go to the point (-2,3) along the straight line segment. Then go back to (2,3)along the curve given by the equation $y = x^2 - 1$. This description also gives you the correct orientation of C.
 - (c) Let $F(x, y) = x \sin(x)i + (xy + \ln(1+y^2))j$. Use Green's Theorem to calculate the circulation of F around C.
- 5. (a) State Stoke's Theorem carefully.
 - (b) Verify Stoke's Theorem for the vector field

$$F(x, y, z) = -yi + xj + xzk$$

and the surface S defined by $x^2 + y^2 + z^2 = 17$ and $z \ge 4$. Sketch the surface S.

MATH1402

CONTINUED

www.mymathscloud.com 6. (a) Let A be a vector potential for B, i.e., B = curlA. Let $\phi : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function and show that

 $A + \vec{\nabla}\phi$

is also a vector potential for ${m B}.$ Find an expression for the divergence of ${m A}+ \vec
abla \phi$ in terms of the divergence of A.

- (b) For the vector potential A = 2xi + 2yj + 2zk, is it possible to find a smooth function $\phi : \mathbb{R}^3 \to \mathbb{R}$ such that $\mathbf{A} + \nabla \phi$ is divergence free? If so, provide a ϕ that works.
- (c) A central vector field is one of the form F = f(r)r, where $f : \mathbb{R} \to \mathbb{R}$ is a smooth function, r + xi + yj + zk, and r = |r|. Show that any central vector field is irrotational, i.e., $\operatorname{curl} F = 0$.

MATH1402

END OF PAPER